教师名录

张才喜
 

职       称:教授  PI

所属学科:园艺学

研究方向:核果类栽培与育种

电子信箱: acaizh@sjtu.edu.cn

 

研究领域

以甜樱桃等果树为研究对象,开展果树发育生物学、植物激素调控和气候变化相关的栽培技术与新品种开发。重点开展甜樱桃基因组学、发育生物学、休眠机理、低需冷量品种选育以及果树优质高效和轻简化栽培。

 

个人简介

张才喜,新葡的京集团8814教授,博士生导师,国家桃产业技术体系樱桃栽培技术岗位科学家。入选上海市农业领军人才,教育部新世纪优秀人才支持计划和SMC-晨星青年学者奖励计划,荣获新葡的京集团8814校长奖和凯原十佳优秀教师称号。担任国际园艺学会Bioregulators in Fruit Production工作组主席,农业农村部南亚热带果树生物学与遗传资源利用重点实验室学术委员会委员,中国果品流通协会樱桃分会副理事长,上海市园艺学会副理事长,中国园艺学会樱桃分会常务理事,中国农塑学会园艺分会理事,上海果业产业体系栽培研究室主任,云南省科技厅院士(专家)工作站专家,山东临朐县人民政府甜樱桃科技顾问,云南省昭通市樱桃专家站专家。 Molecular Horticulture和Horticulturae期刊编委。1994年毕业于长江大学,1997年浙江大学硕士毕业,同年进入新葡的京集团8814工作。2005年获日本鸟取大学农学博士,2006-2010年先后作为日本学术振兴会(JSPS)外国人特别研究员和美国华盛顿州立大学博士后开展果树发育生物学研究。2014-2016年先后挂职云南省洱源县人民政府副县长和大理州人民政府副秘书长。发表SCI论文100余篇,中文核心期刊论文90余篇。成功选育甜樱桃新品种“丽晶”和“锦晶”,蜜梨新品种“翡翠蜜”,“爽蜜”和“黄金蜜”。主讲《葡萄和葡萄酒文化》全校通选课,担任人文自然类纪录片《水果传》学术顾问。

 

主要科研项目

  1. Co-PI 国家自然科学基金地区联合基金 滇西北樱桃砧木‘细齿樱桃’的耐涝生理和分子机制研究(2023-2026)
  2. 主持 农业农村部 国家桃产业技术体系樱桃栽培技术岗位科学家项目 (2021-2025)
  3. 主持 上海市农委 适宜暖地栽培的甜樱桃新品种选育及种苗规模化繁殖技术研究(2022-2025)
  4. 主持 国家自然科学基金青年基金  PavDAM1启动子缺失突变诱导的甜樱桃休眠机制研究 (2022-2024)  
  5. 主持 上海市农委 高品质梨新品种选育和分子标记开发  (2022-2025)
  6. 主持 上海市农委 甜樱桃避雨设施栽培规程(2019-2021)
  7. 主持 上海市科委 大理州葡萄品种引选及根域限制栽培技术研究与示范推广(2017-2018)
  8. 主持 上海市农委 现代果业产业技术体系 (葡萄和柑橘) (2014-2018)
  9. 主持 农业部948重点项目 适合南方暖地栽培甜樱桃种质资源的引进与利用 (2013)
  10. 主持 上海市科委  上海地区甜樱桃新品种引种筛选与示范 (2011-2013)
  11. 主持 科技部863子项目 设施农业数字化管理与精准化作业技术研究 (2012-2015)
  12. 主持 国家自然科学基金面上项目 赤霉素促进梨果实库强转录组和蛋白质组学研究 (2011-2013)
  13. 主持 教育部新世纪优秀人才支持计划  GA促进梨果实库强的功能蛋白质研究 (2011-2013)
  14. 主持 上海市教委 基于根域限制的葡萄、桃等果树有机型栽培技术示范推广(2011-2012)

 

获奖

  1. 第八届中国国际“互联网+”大学生创新创业大赛全国金奖指导教师 (2022)
  2. 上海市“知行杯” 上海市大学生社会实践项目大赛一等奖优秀指导教师 (2020)
  3. 上海市教卫工作党委系统优秀共产党员 (2016)
  4. 全国农牧渔业丰收奖 (2013) 高校农业技术推广机制创新与利用  FH-2013-03-10R
  5. 教育部科技进步一等奖 (2010) 葡萄根域限制栽培技术研究与示范(第3)
  6. 上海市科技进步二等奖 (2007) 葡萄、水蜜桃有机型栽培技术(第5)
  7. 上海市教育委员会科技进步三等奖(2001) 猕猴桃优良品种产业化栽培技术研究(第3)

 

专著

  1. 张才喜 译著《樱桃:科学与生产》新葡的京集团8814出版社,2021,ISBN9787313232342
  2. 张才喜, 2021,第九章,栽培制度及现代新型果园建设, 《中国果树科学与实践-猕猴桃》, 2021. 方金豹主编,陕西科学技术出版社,2021,ISBN 9787536980440    
  3. Zhang C, Du Chen, 2017. Precise Crop Load Management. In: Qin Zhang (ed.): Automation In Tree Fruit Production, CABI International, UK. ISBN 9781780648507
  4. 王世平,许文平,张才喜等 《南方葡萄安全生产技术指南》,中国农业出版社,2014, ISBN 9787109164376 
  5. 王世平,张才喜《葡萄设施栽培》,上海教育出版社,2005,ISBN:754440192 8S.0002
  6. 黄丹枫等,《现代温室园艺》,上海教育出版社,2005,ISBN:754440189 8S.0001, 参编
  7. 陈火英,《现代种子种苗学》,上海科技出版社,2000,ISBN:7-5323-5169-6/S.527, 参编

 

审定品种及授权专利

  1. 上海市审定品种,甜樱桃: “丽晶”. 证书号码:沪 S-SV-PA-008-2021
  2. 上海市审定品种,甜樱桃: “锦晶”. 证书号码:沪 S-SV-PA-007-2021
  3. 上海市审定品种,梨: “翡翠蜜”. 证书号码:沪 S-SV-PPY-005-2023
  4. 上海市审定品种,梨: “黄金蜜”. 证书号码:沪 S-SV-PPY-004-2023
  5. 上海市审定品种,梨: “爽蜜”. 证书号码:沪 S-SV-PPY-006-2023
  6. 一种短低温甜樱桃嫁接育苗的方法.  中国专利号:4148571
  7. Methods for improve fruit production and fruit quality. USSP2011/0281730A
  8. 长江以南地区露地栽培欧洲大樱桃破眠剂及破眠方法. 中国专利号: 789515
  9. 一种甜樱桃树木修剪装置   中国专利号:11974496
  10. 一种甜樱桃采摘装置  中国专利号:11973744
  11. 甜樱桃水肥灌溉云端控制系统V1.0  登记号 2021SR0267510

 

研究论文 (通讯作者或第一作者)

  1. Muhammad A et al. 2024. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. Journal of Environmental Management,357:20759
  2. Xu J, et al. 2024. Exogenous salicylic acid improves photosynthetic and antioxidant capacities and alleviates adverse effects of cherry rootstocks under salt stress. Journal of Plant Growth Regulation, https://doi.org/ 10.1007/ s00344-023-11195-6
  3. Muhammad A et al. 2024. Comparative genomics of N-acetyl-5-methoxytryptamine members in four Prunus species with insights into bud dormancy and abiotic stress responses in Prunus avium. Plant Cell Reports, 43: 89
  4. Muhammad A et al. 2024.Nanotechnology-based approaches for promoting horticulture crop growth, antioxidant response and abiotic stresses tolerance. Plant Stress,11: 100337
  5. Jiu S et al. 2023. Chromosome-scale genome assembly of Prunus pusilliflora provides novel insights into genome evolution, disease resistance, and dormancy release in Cerasus L., Horticulture Research, uhad062
  6. Wang Y et al. 2023. Oxygenation alleviates waterlogging-caused damages to cherry rootstocks. Molecular Horticulture.3:8
  7. Muhammad A et al. 2023. Fruit crop abiotic stress management: a comprehensive review of plant hormones mediated responses. Fruit Research 3:30
  8. Liu X et al. 2023. Sweet cherry PavGA20ox-2 positive regulation of plant growth, flowering time, and seed germination. Scientia Horticulturae, 322:112405
  9. Muhammad A et al. 2023. Melatonin: A multi-functional regulator of fruit crop development and abiotic stress response, Scientia Horticulturae, 321,112282
  10. Wang L et al. 2023. Genome-wide identification of the NCED gene family and functional characterization of PavNCED5 related to bud dormancy in sweet cherry. Scientia Horticulturae, 319:112186
  11. Xu Y et al. 2023. Strigolactone and salicylic acid regulate the expression of multiple stress-related genes and enhance the drought resistance of cherry rootstocks. Scientia Horticulturae, 313:111827
  12. Wang J et al. 2022. FRUITFULL potentially regulates double fruit formation at high temperature in sweet cherry. Environmental and Experimental Botany 201:104986
  13. Sun W et al. 2022. Non-uniform changes of growing conditions for sweet cherry trees responses to climate warming in main production regions of China. International journal of Climatology 16:10464-10481
  14. Liu et al. 2022. PavGA2ox-2L inhibits the plant growth and development interacting with PavDWARF in sweet cherry. Plant Physiology and Biochemistry 186:299-309
  15. Jiu S et al. 2022. Molecular mechanisms underlying the action of strigolactones involved in grapevine root development by interacting with other phytohormone signaling. Scientia Horticulturae 293:110709
  16. Ali et al. 2022. MYB transcription factor family in sweet cherry: genome-wide investigation, evolution, structure, characterization and expression patterns. BMC Plant Biology 22: 2
  17. Sun W et al. 2022. Climatic suitability projection for deciduous fruit tree cultivation in main producing regions of northern China under climate warming. International Journal of Biometeorology, 1-18
  18. Ali et al. 2022. Analysis of the GST gene Identification, comprehensive genome-wide analysis of Glutathione S-Transferase (GST) gene family in sweet cherry and their expression profiling reveals a likely role in anthocyanin accumulation. Frontiers in Plant Science 13:938800
  19. Chen Y et al. 2022. Soluble solids content binary classification of Miyagawa Satsuma in Chongming island based on near infrared spectroscopy. Frontiers in Plant Science 13:841452
  20. Abdulla et al. 2022. The role of gene duplication in the divergence of the sweet cherry. Plant Gene 32,100379
  21. Ali et al. 2022. Evolutionary and Integrative analysis of Gibberellin-dioxygenases gene family and their expression profile in three Rosaceae genomes (F. vesca, P. mume and P. avium) under phytohormone stress. Frontiers in Plant Science 13:942969
  22. Wang J et al. 2021. Cold induced genes (CIGs) regulate flower development and dormancy in Prunus avium L., Plant Science 313:111061
  23. Jiu S et al. 2021. Strigolactones affect the root system architecture of cherry rootstock by mediating hormone signaling pathways. Environmental and Experimental Botany 193,104667
  24. Ali et al. 2021. Plant growth regulators modify fruit set, fruit quality, and return bloom in sweet cherry. HortScience 56:922-931
  25. Wang J et al. 2020. SVP-like gene PavSVP potentially suppressing flowering with PavSEP, PavAP1, and PavJONITLESS in sweet cherries. Plant Physiology and Biochemistry 159:277-284
  26. Jiu S et al. 2020. Genome-wide identification, characterization and transcript analysis of the TCP transcription factors in Vitis vinifera. Frontiers in Genetics 10:1276
  27. Wang J et al. 2020. Dormancy-associated MADS-box (DAM) genes influence chilling requirement of sweet cherries and co-regulate flower development with SOC1 gene. International Journal of Molecular Sciences 21: 921.
  28. Jiu S et al. 2020. The Cytochrome P450 Monooxygenase inventory of grapevine: Genome-wide identification, evolutionary characterization and expression analysis. Frontiers in Genetics 11:44
  29. Wang J et al. 2020. The MADS-box genes PaMADS3/4/5 co-regulate multi-pistil formation induced by high temperature in Prunus avium L. Scientia Horticulturae 256:108593
  30. Liu J et al. 2019. MADS-box genes are involved in cultivar- and temperature-dependent formation of multi-pistil and polycarpy in Prunus avium L. Journal of Plant Growth Regulation 38:1017–1027
  31. Wang L et al. 2017. Hydrogen cyanamide improve dormancy release and flowering associated with gibberellin acids and abscisic acid in sweet cherry cv. ‘Summit’ trees. New Zealand Journal of Crop & Horticultural Science 45:14-28
  32. Gao Z et al. 2016. Proteomic analysis of pear (Pyrus pyrifolia) core and mesocarp during fruit development. PROTEOMICS 16:3025-3041
  33. Wang L et al. 2016. Impact of chilling accumulation and hydrogen cyanamide on floral organ development of sweet cherry in a warm region. Journal of Intergrative Agriculture 16:61341-2
  34. Li J et al. 2015. Proteomic analysis of the effects of gibberellin on increased fruit sink strength in Asian pear. Scientia Horticulturae 1195: 25-36
  35. Zhang C, M Whiting. 2013. Plant growth regulators improve sweet cherry fruit quality without reducing endocarp growth. Scientia Horticulturae 150: 73-79
  36. Zhang C, M Whiting. 2012. The occurrence of protruding pistil in sweet cherry and its consequence on fertilization. Scientia Horticulturae 140:156- 163
  37. Zhang C, M Whiting. 2011. Pre-harvest foliar application of Prohexadione-Ca and gibberellins modify canopy source-sink relations and improve quality and shelf-life of ‘Bing’ sweet cherry. Plant Growth Regulation 65:145-156
  38. Zhang C, M Whiting. 2011. ImprovingBingsweet cherry fruit quality with plant growth regulators. Scientia Horticulturae 127: 341-346
  39. Zhang C et al. 2010. Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia. Journal of Experimental Botany 61:4291–4302
  40. Zhang C et al. 2009. Gibberellins and N-(2-Chloro-4-pyridyl)-N'-phenylurea improve retention force and reduce water core in pre-mature fruit of Japanese pear ‘Housui’. Plant Growth Regulation 58:25-34
  41. Zhang C et al. 2008. Hormonal regulation of fruit set, parthenogenesis induction and fruit expansion in Japanese pear. Plant Growth Regulation 55:231-240
  42. Zhang C et al. 2008.Partitioning of 13C-photosynthates from different current shoots neighboring with fruiting spur in later-maturing Japanese pear during the period of rapid fruit growth. Scientia Horticulturae 117:142-150
  43. Zhang C et al. 2007. Biologically active gibberellins and ABA in fruit of two late-maturing Japanese pear cultivars with contrasting fruit size. Journal of the American Society for Horticultural Science 132:452–458                                    
  44. Zhang C et al. 2007. Role of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regulation 52:161-172                                                  
  45. Zhang C et al. 2006.The impact of cell division and cell enlargement on the evolution of fruit size in Pyrus pyrifolia. Annals of Botany 98: 537-543
  46. Zhang C et al. 2005. 13C-photosynthate accumulation in Japanese pear fruit during the period of rapid fruit growth is limited by the sink strength of fruit rather than by the transport capacity of the pedicel. Journal of Experimental Botany 56:2713-2719
  47. Zhang C et al. 2005. Spur Characteristics, fruit growth, and carbon partitioning in two late-maturing Japanese pear cultivars with contrasting fruit size. Journal of the American Society for Horticultural Science 130:252–260                                                 
  48. Zhang C et al. 2005. Partitioning of 13C-photosynthate from spur leaves during fruit growth of three Japanese pear cultivars differing in maturation date. Annals of Botany 95: 685-693
  49. 王继源等. 2022. 甜樱桃PavMYC2基因克隆与表达分析. 果树学报, 39:701-711
  50. 孙菀霞等. 2021. 长三角地区低温特征及其对甜樱桃蓄冷量的影响. 果树学报, 38:1900-1910
  51. 屈玥婷等. 2021. 砧木类型对甜樱桃花芽多胺代谢相关基因表达和休眠的影响. 西北植物学报, 41:9-19                                              
  52. 纠松涛等. 2020. 花发育阶段及温度对不同品种甜樱桃柱头可授性的影响. 西北植物学报, 10:1698-1705
  53. 纠松涛等. 2020. 甜樱桃在上海地区的生物学特性评价与研究. 分子植物育种, 8:1-9
  54. 刘勋菊等. 2020. 人工智能在葡萄与葡萄酒产业中的应用及前景分析. 中外葡萄与葡萄酒, 5:44-48
  55. 郑奇志等. 2019. 植物生长调节剂对甜樱桃座果率及果实品质的影响. 新葡的京集团8814学报,  6:213-220
  56. 郑奇志等. 2019. 上海地区两个短低温早熟甜樱桃品种栽培初报. 中国南方果树, 2: 82-85
  57. 张  卓等. 2019. 透湿性反光膜覆盖对设施甜樱桃树冠光照及果实品质的影响初报. 中国果树,354-56
  58. 张  卓等. 2019. 避雨棚甜樱桃地面覆盖透湿性反光膜的效应研究. 落叶果树, 5 : 8 -11
  59. 张  卓等. 2019. 铺设反光膜对日光温室甜樱桃果实品质的影响初报. 新葡的京集团8814学报, 4:24-28
  60. 陈毓瑾等. 2019. 新型DCF2技术在克服老桃园连作障碍中的应用. 经济林研究, 2:183-190
  61. 张才喜等. 2018. 云南省大理州甜樱桃引种栽培初报. 中国南方果树,4:117-122
  62. 陈晓丹等. 2017. 甜樱桃不同品种需冷量评估初探. 中国南方果树, 3:109-112
  63. 陈晓丹等. 2017. 上海地区甜樱桃改良型篱壁式栽培模式初步评估. 果树学报, 33: 1111-1119
  64. 王  磊等. 2016. 单氰胺对甜樱桃休眠解除及开花过程树体碳氮营养影响. 果树学报,33:385-392
  65. 王  磊等. 2014. 暖地甜樱桃砧穗组合适应性研究. 果树学报, 31:139-145
  66. 张才喜等. 2013. 南方暖地甜樱桃短低温品种选育和利用. 中国南方果树, 42:48-51

 

欢迎对我们研究方向感兴趣的科研人员、博士后、研究生和本科生加盟!

Copyright 2016 新葡的京集团8814(中国)股份公司    访问旧版
地址:上海市闵行区东川路800号 电话:021 - 34205866 备案:沪交ICP备20101025